
~ Pergamon 

www.elsevier.com/locate/jappmathmech 

Z Appl. Maths Mechs, Vol. 68, No. 3, pp. 43%446, 2004 
© 2004 Elsevier Ltd 

All rights reserved. Printed in Great Britain 
PIh S0021-8928 (04) 00058-9 0021-8928/$~see front matter 

VARIATIONAL PRINCIPLES OF THE THEORY OF 
THE LIMITING EQUILIBRIUM OF MEDIA WITH 

DIFFERENT STRENGTHSt 

V. R MYASNIKOVm~: and V. M. S A D O V S K I I  

Moscow and Krasnoyarsk 

e-mail: sadov@iem.krasn.ru 

(Received 22 September 2003) 

The simplest phenomenological models of materials having different resistances to tension and compression are constructed 
using a rheological method supplemented by a new element - a rigid contact. The problems of the solvability of static boundary- 
value problems for small deformations of the medium are considered within the framework of the regularized model. A 
generalization of the static and kinematic theorems of the theory of limiting equilibrium is given. The upper bound of the limiting 
load and the angle of emergence of the linear zone of deformation localization in the problem of the rupture of a cylindrical 
specimen with a radial notch when there is pressure on the sides of the notch is obtained as an example of the application of 
these theorems. © 2004 Elsevier Ltd. All rights reserved. 

1. T H E  M A T H E M A T I C A L  M O D E L  

Rheological models of materials, having different resistance to tension and compression (granular and 
porous media: soils, rocks, concretes, graphites, etc.), are constructed using an auxiliary element - a 
rigid contact [1]. Such a system is illustrated in Fig. 1, for the simplest model, taking into account the 
connectivity of the medium. Such a medium does not deform under compressive stresses or tensile 
stresses less than the cohesion coefficient % (the yield point of the plastic element). The attainment 
of the value of % corresponds to limiting equilibrium, in which the deformation can be an arbitrary 
positive quantity. Stresses above this limit are impossible. The constitutive equations of the uniaxial 
deformation for monotonic loading without unloading result in the following system 

c~_<%, a_>O (cr-%)e = 0 

This system is equivalent to the variational inequalities 

( ¢ -  %)(~: - a) _< 0, ~,~:>_0; (8 - ¢y)~ _< 0, ~,6___(y 0 

(e and (y are variables), each of which allows of the potential representation 

(y e Ocp(e), ~ e O~(o) (1.1) 
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Fig. 2 

Here q0 = ~0~ + 66(e) and ~g = 6/(((s - (So) are the potentials of the stresses and strains. Functions 
vanishing on the cones C = {e > 0} and K = {(s ~< 0} and infinite outside these cones are denoted by 
6; ~ serves to notate the subdifferential 

which is the set of slopes of linear functions, the graphs of which pass through the point (e, q0(E)) and 
lie below the graph of the function q0. 

The extension to the case of the three-dimensional stress-strain state is constructed on the basis of 
Eq. (1.1). For this a symmetrical cohesion tensor %, a convex and closed cone C with vertex at the origin 
of the six-dimensional space of the strain tensors, or an analogous cone K in the space of the stress 
tensors are given. If one of the cones is known, then the second one can be obtained as the conjugate 

(the colon denotes the convolution operation). The cone K and the tensor (So must satisfy condition 
- %  ~ K, which indicates the admissibility of the natural stress-free state of the medium. The potentials 
¢p(~) and gt(~) are obtained automatically by replacing the scalar quantities by tensor ones and the 
product by convolution. These potentials are double convex functions, i.e. they are expressed in terms 
of one another using Young's transformation 

q0(~) = sup{O: e-~g((~)}, ~g((s) = sup{o : e-q0(e)} 
o E 

The constitutive equations (1.1), which describe the behaviour of the connected granular medium 
with rigid grains, are to a certain extent incorrect: they do not enable one to find the deformed state 
for specified stresses uniquely or to find the stress for specified deformations. A model of a granular 
medium with elastic grains serves as the regularization. The rheological diagram of this model is pre- 
sented in Fig. 2. 

Suppose a and b are symmetrical positive definite fourth-rank tensors, comprised of the moduli of 
elasticity of the regularizing elements and let d for now be an arbitrary tensor with similar properties. 
If the loading is monotonic, then the constitutive equations can be represented in the form (1.1) using 
convex and differentiating potentials, which are formulated in terms of the projections of the strain 
and stress tensors onto the respective conesAt is well known [2] that the projection rta(e) of the tensor 
e onto the cone C with norm I E I d = "& : d : e is the unique solution of the variational inequality 

(E - ~,~(~)) : d : (~: - rcd(~)) -< O, ~a(g), ~ ~ C 

or the equivalent system 

(,,?.-ga(e)) : d : ~:a(e) = 0 ( e -ga (e ) )  : d : ~GO (1.2) 

In turns out that, like the case of orthogonal subspaces, each tensor can be represented in the form of 
the sum of its projections onto the conjugate cones 
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e = ~a(e) + d -1 • l-la_~(d " e) (1.3) 

where IIa-,(o ) is the projection ~ onto K with norm ] o l a-l, associated with the inverse tensor d -1. 
Actually, the inequality in system (1.2) exactly means that the tensor G = d : (e - rtd(e ) belongs to 

the cone K, conjugate to C. Furthermore, the following equation holds 

: d  q : ( d ~ - ~ )  = 0 

by virtue of Eq. (1.2), and since red(e) • C, then by definition of the conjugate cone the following 
inequality is satisfied 

d-I ~ :  : (d : e - o ) _ < 0 ,  6 • K  

Hence G = I1a-1 (d : e), which corresponds to relation (1.3). 
The identity 

I~12 = I d( )12d + rtd(e)12d = Ind(e)12d + IIId-'( d: ~)12d-, (1.4) 

is proved, taking into account Eqs (1.2) and (1.3). 
Note that in the more general case when C is an arbitrary convex set, the term 

le-nd(e)l  2 = inf ]e-~] 2 
~ec 

is a differential convex function [3], the derivative of which is equal to 2d : (e - rta(e)). Hence the function 
I rtd(e)13 is also differentiable, where 

a 2 
= 2d :  ha(e) (1.5) 

Note also that the projector onto the cone is positive homogeneous, i.e. 

%(~,e) = Z,~d(e), ~,-> 0 

This follows from Eq. (1.2). 
Formulae (1.3) and (1.4) enables us to consider only one of the cones without calculating its conjugate 

in explicit form. A medium possessing elastic properties, according to the rheological model (Fig. 2), 
is characterized by the system 

e = e a + e  b, ~ = a : e  a ((~--(Yo--b'eb):(~--eb)<--O, Eb, E • C  

From this system it follows that 

-1 
e = a : C + r C b ( b  -1 " ( o - % ) )  (1.6) 

Using (1.5) we can obtain the potential of the deformations 

2 1 o.[21 IX 2 I~/ = ~([{3rla q l  2 + Tgb(b-I (O_{~0) )b )  = ~([ a- +[~--%12-' -- I b ' (~--%)[b -') (1.7) 

The coincidence of the norm of the tensor and the norm of its projection onto the cone occurs only 
for the elements of the cone by virtue of identity (1.4). Consequently, only in the case when G - % • K 
is the potential (1.7) equal to the deformation energy of the elastic element with the tensor of the 
coefficients a. In the limit as b --+ 0, this potential tends to 

, )  

Wa ----- 1~1~-,/2 + 8K(o - %)  

and as a --+ oo it tends to 

v b  = : 
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The dual potential of the stresses, that is Young's transformation of the function ~(~), equals 

q~ = -supinf  2o 
2 o ~:o e c( 

An exact upper bound can be calculated after interchanging sup and inf. It is reached for the tensor 
for fixed o = a : (~ - ~), and hence 

1 ¢p = ~ i n f { l e - ~ l Z + l , ~ 1 2 b + 2 % :  ~} 
"{eC 

The separation of the total square relative to the tensor ~ results in the equation 

1 2 I inf [d-1 : E_ 00)_~  2d qo = ~(l~la --[a: E- Oo12d_,) + (a :  
2~e C L 

where d = a + b. Hence 

1 2  d(d' (a  -o0))5 1 o0)12 A (1.8) = ~(1~1~- : = ~ ( l ~ l o - l a :  ~ - % l d - '  + Ina - ' (a :  ~ -  

According to Eq. (1.8) the potential of the stresses is a differentiable function. By virtue of relation 
(1.5) 

o = a : {~ -~d(d  -l " (a • ~-O0))} (1.9) 

Taking the limit with respect to b as b ~ 0 the potential of the stresses for the medium, whose rheological 
model contains one elastic element 

1 2 .%(,~_ a q 00 ) 2a) 

can be obtained. This potential is dual to ~a(o). Similarly, as a ~ ~o, we obtain the potential 

% = le12b12 + 00 • e + ac(e) 

dual to ~b(O). 
A closed mathematical model to describe the equilibrium of the medium with potentials q0(~) and 

~(o)  for small deformations is formed by the constitutive equations in the form (1.6) or (1.9), supple- 
mented by the conditions of equilibrium and geometric constraints 

V . o + f  = 0, 2e(u) = Vu+(Vu)*  (1.10) 

Hence u is the vector of the displacements a n d f i s  the vector of the body forces. The asterisk denotes 
the transposition of the tensor, and the generally accepted notation of tensor analysis is used. 

2. THE E X I S T E N C E  OF S O L U T I O N S  

Let ~2 be the space occupied by the medium or a plane domain with a boundary F consisting of two 
disjoint parts Fu and Fo with no displacements on the first and a specified distributed load on the second 
(v is the vector of the normal): 

u = 0 o n  F,, o . v  = q o n F  o (2.1) 

The problem is to determine the vector field u(x) and the tensor field o(x), which satisfy Eqs (1.9) 
and (1.10) with boundary conditions (2.1). We will assume that £~ and F~ are such that the second Korn 
inequality is satisfied, for example, ~ is a bounded domain which satisfies the cone condition, and Fo 
is a set, open in F [2.4]. We will assume that 

(YO ~ L2(~), V~30, f e L2(~ ), q e L2(Fc), a, b e L~(f~) 
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adopting for simplicity the standard notation for corresponding spaces of scalar, vector and tensor 
functions, where the tensor functions a and b are positive definite uniformly in f~, i.e. constant a0 > 0 
and b0 > 0 exist for which ] e ]2/> a0e : e nearly everywhere in the domain ~ and for any e. 

In this case the tensor function a - a : d q : a e L=(~)  is uniformly positive definite. Actually, the 
tensors of the coefficients a and b, specified almost everywhere in ~,  form linear transformations over 
the six-dimensional space of second-rank tensors. The matrices of these transformations are symmetrical 
in each space basis and are positive definite. In the special basis el, . . . ,  e6 of eigentensors of the form 

b ' e  k = 13ka:e k, ~ k ' a : e  k = 1, e j : a : ~ k  = 0 ( j ;ek)  

the matrix of the transformation a is the identity matrix and b is the diagonal matrix with positive 
eigenvalues 131, . . . ,  136 along the main diagonal. The easily verified equations 

3k 
( a - a  "d  - l ' a ) ' e  k - 1+13k a ' ~ k  

hold, by means of which the inequality 

_ d - 1  e ' ( a  a"  • a) • e >_ 1301el]/(1 + 130) (13 0 = min13k) 
k 

is proved by expanding the arbitrary tensor e in the basis. This inequality enables us to establish the 
required estimates for the potentials q~(e) and ~(G). Since, by virtue of Eq. (1.8) 

2 d q - o  2 2~>lel  2 - [ a ' a - o o ] 2 d ,  = ]el 2 - l a ' e l a _ l + 2 a : a "  :~o [ Otd-I 

then, applying the obvious inequality 

d - '  -131ela 2 d-I  (5"0 2/~ (13 > O) 2e" a • " o 0 > - " 

it can be shown that 

: 0 2 [el2_>2cp(e)>(1/(1 +13o)-[3)lel 2 -  d-'  %]/13-[  o1 , (2.2) 

The chain of inequalities 

[612_~ _< 2tg(~)_< 10[2_~ + [~_ 60[b2_, (2.3) 

is satisfied for the function gt(cr), defined by expression (1.7). 
Generally speaking, not only the tensors of the moduli of elasticity but also the cones x e f~ and C 

depend on the point K in heterogeneous media. We will further assume that in this case the functions 

x ~ ~p(x, e), x ~ ~¢(x, o) 

belong to the space L= (f~) for any e and (y. 
The assumptions made enable us to establish the solvability of the problem, which leads to two 

independent variational problems. The unknown displacement field is obtained as a result of minimizing 
the integral 

F a 
(2.4) 

in the linear space U of the generalized functions u c Hi(f2), which satisfy boundary condition (2.1) 
on Fu. When determining the stress field, the integral 

J ( o )  = ~v(o)dg~ (2.5) 
f2 
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is minimized in the affine space Z of the tensor functions 6 ~ L2(~), for which the equilibrium equations 
(1.10) and boundary conditions (2.1) on F,  are satisfied. Both integrals are strictly convex functionals 
with a weakly semi-continuous lower bound. Estimates (2.2) and (2.3) ensure the coerciveness of these 
functionals. The spaces U and X are closed. On the basis of a well-known theorem (see [2, 4-6]) a 
conclusion can be drawn regarding the existence and uniqueness of the solution. The classical theory 
of duality [4] establishes a connection between the displacement and stress fields obtained which agrees 
with the constitutive equations (1.1). 

In the important case F~ = O, when static boundary conditions are given along the entire boundary, 
the displacement field is necessarily non-unique and is determined, apart from rigid displacements 

14 = { u l u ( x ) = w + m . x }  

where w is an arbitrary vector, m is a skew-symmetric second-rank tensor. The space HI(~) is split into 
the direct sum H and the orthogonal subspace 

H±(~) = {u~ Hl(~Z)]Iu d~= [.xxu d~=O} 
f~ f~ 

If f~ is the Lipschitz domain, the third Korn inequality is satisfied. This inequality, by virtue of estimate 
(2.2) for [3 < 1/(1 + ~0) denotes the coerciveness of the functional I(u) in the given subspace and 
guarantees the existence of a solution when the main vector and main moment of the forces vanish 

I f d a + I q  dF = I x x f d a + I x x q  dF = 0 (2.6) 
F ~ F 

The assertion of the existence and uniqueness of the solution remains in force in the case of hetero- 
geneous boundary conditions in displacements: u = u0 on Fu if u0 e H1/2(Fu). 

The problem of the solvability of the boundary-value problems within the framework of limit models 
turns out to be more difficult. The problem in stresses, leading to the minimization of the quadratic 
functional 

1 2 
Ja(6) = ~II6la d~ 

a 

in the convex and closed set 

ZK = {6 ~ Z 16 - C0 ~ K almost everywhere in ~} 

is well posed as b -+ 0. If the set ZK is not empty, the minimum point exists and is unique. 
The proof of the existence of a displacement field requires special constructions, since the functional 

la(u), defined by formula (2.4) in terms of %(a) is not coercive in HI(~) (see [4]). The uniqueness 
theorem does not hold. 

The problem in displacements is well posed as a --~ oo. It reduces to the determination of the minimum 
point of the quadratic functional 

Ib(u) = ~I£(U)[b+60:I~(u)-f'u df~- q . udF  (2.7) 
f~ F,~ 

on the convex and closed cone 

Uc = {u ~ Ule(u) E C almost everywhere in f~ 

If Fu = ®, the cone Uc must be considered as the subset H±(g~), requiring in addition that conditions 
(2.6) must be satisfied. The solution of the problem of the minimum exists and is unique (apart from 
rigid displacements). The construction of the stresses is related to the minimization of the non-coercive 
functional J b ( 6 )  o n  Z. This functional is obtained from (2.5) by replacing ~(6) by ~b(6). In the case 
when ZK ~: O, when, as will be shown below, the medium is in an absolutely rigid state, each tensor 
field 6 c ZK satisfies the equation Jb(6) = 0 and is the required minimum point. Hence, the stress field, 
generally speaking, is non-unique. The proof of the existence of the solution of the problem in stresses 
is not, in generals, of practical interest due to the obvious mechanical ill-posed nature of the model. 
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3. THE L I M I T  STATES 

The domain f2 is split into two parts - a rigid domain, in which the material does not deform, and a 
domain of non-zero deformation, according to the model for the equilibrium of the medium. The applied 
external load (f, q) is said to be safe, if there is no deformation zone [7]. In this case the displacement 
vector or its projection onto H±(O) is equal to zero nearly everywhere in f2. 

Let Y'K be a non-empty set. Then by Green's formula for any ~ ~ ZK and ~ ~ Uc 

I ( V - ~ + f ) .  u d~  = I (  f -  u - ( ~ :  e(u)) dr2+ I q .  fi dr" = 0 
f~ F~ 

Hence, we obtain 

W(fi) = ~ ( f .  fi-130 • e(fi)) d n +  I q - f i  dF_<0 (3.1) 

taking into account that (~ - %) : e(~) ~< 0. The actual displacement field is obtained as the solution 
of the problem of minimizing the functional Iv(u) on the cone Uo The point 0 e Uc serves as the vertex 
of this cone, hence 

I b (U  ) = min Ib(~) = min minlb()~fi) 
fie U c fie Uc~>-O 

The direct calculation of the minimum with respect to )~, taking into account expression (2.7), results 
in maximization problem 

W2+(fi) 
Ib(u) = -max 

~e vcfl~(fi)j~dI2 
f~ 

(3.2) 

where W+ = (W + ] W[ )/2 is the positive part of the expression. 
In condition (3.1) is disturbed for a certain element ~ e Uc, then, judging by the value of the functional 

Ib(U) is non-zero (strictly negative). To satisfy this condition, Iv(u) = 0 for all elements; consequently 
the unique solution of the minimization problem (2.7) is identically equal to zero. Hence in the case 
when ZK ~ ~ the load f, q is safe. 

By using a version of the principle of duality, given, for example, in [8], the inverse proposition can 
be proved in the following weak form: if the acting load is safe, then a sequence of tensor functions 
13n ~ Z exists, for which 13n - 130 tends to the cone K as n ~ ~ .  This means that the sequence of projections 
onto the conjugate cone C formed by the first terms of the expansions 

13n - 130 = b • rtb(b -1 • (13n - 130)) + lqb-,(13n - 130) 

which follow from formula (1.3), tends to zero almost everywhere in the domain ~. If 13n is a convergent 
sequence in L2(f2), then the set ~:K contains is limit and, consequently, is not empty. However, generally 
speaking, the limits do not have to exist, but even in this case the existence of such a sequence guarantees 
the satisfaction of condition (3.1). 

Actually, the problem of determining the exact lower bound of the functional 

Jb(13) ~ I  rtb(b-I 2 = : (13 - 130)) b d~'2 

~2 

in the affine space Z due to a shift can easily be reduced to the analogous problem for the linear subspace 
Z 0 = Y~ - Y, Q L2(~ ). The functional considered is bounded from below on Z 0 and is continuous, for 
example, at the point 0 ~ Z0. As was shown in a more general formulation in [4], the minimization 
problem (2.7) is a dual problem. Hence all the conditions of the principle of duality are satisfied and 
from its statement we have the equation 

inf Jb(•) = -Ib(u ) (3.3) 
6 e Y  
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in which inf cannot be reached on elements from E, while the right-hand side terms out to vanish in 
view of the safety of the load. 

Let (~,, be the minimizing sequence, i.e. Jb(G,) ~ 0. Then rtb(b -1" (% - ~0)) ~ 0 in L2(ff2 ). As is well 
known, from the sequence which converges in L2(f2) it is possible to select a subsequence which 
converges nearly everywhere. This subsequence obviously satisfies the required property. The fact that 
its limit, if one exists, is part of the set EK is proved taking into account expansions (1.3). 

To prove the assertion that condition (3.1) is satisfied we will assume that c~n e Z is a sequence for 
which ~, - G0 tends to the cone K. Then, since convergence nearly everywhere results in convergence 
with respect to the norm L2(f2), the sequence Jb((~) tends to zero and is a minimizing sequence, and 
moreover, the lower bound in (3.3) vanishes. Hence, Ib(U) = 0 and u = 0. 

Thus, the satisfaction of two mutually equivalent conditions: the conditions ZK ¢ • in the weak form 
described above and (3.1), is necessary and sufficient for the safety of the load (f, q). The criterion 
obtained constitutes the content of the static and kinematic theorems of the theory of limiting 
equilibrium, well developed for models of rigid-plastic media [7, 8]. 

Safe loads form the convex and closed set S in the Cartesian product of the spaces L2(~) and L2(F,~). 
The convexity is proved starting from the definition: if (f, q) and (f, ~) are elements of S, then condition 
(3.1) is satisfied for them. This condition obviously also holds for the convex combination of loads 
(f, q) + (1 - X)(f  ~/) with parameter X e (0, 1). The closure S is a consequence of the continuous 
dependence of the solution of minimization problem (2.7) on f and q. It is well known [2] that this 
problem is equivalent to the variational inequality (u, ~t ~ Uc). 

I { ( b : ~ ( u ) + ~ o ) ' ( E ( f i ) - e ( u ) ) - f ( u - u ) } d a -  [q ' (g~-u )dF>-O (3.4) 
f~ Fg 

Assuming here the solution corresponding to the external load (3~ q) as an arbitrary variable function 
and adding (3.4) to the variational inequality characterizing the solution g, in which the variable 

function is equal to u, we can obtain 

I (? - i ) -  u)da + I (O-q). 
f2 f2 F~ 

Hence, applying Korn's inequality to the left-hand and the normative inequalities to the right-hand side, 
we obtain an estimate which guarantees the continuous dependence of the solution 

c~ll~- ull.,(~) -< II)- ftlL=(   + I1@- qllH-,,=(n ) (c~ > 0) (3.5) 

Boundary points of the set S correspond to the limiting loads. We can determine the safety factors 
- non-negative numbers m and n, for which the load mr, nq is limiting, for any not necessarily safe load 
(f, q). If the coefficient m is given, where (mr, O) e S, then by virtue of criterion (3.1), we have 

= • ~dF , = I (~o  ~ ( f i ) - m f .  fi)df~ 
~ Vcl kro + a 

(3.6) 

The function n(m) is concave (Fig. 3), since the exact lower bound of the sum is greater than or equal 
to the sum of exact lower bounds: 

: I Is <}> n(~.rn+(1-~)r~)  inf (~g(fi, m)+(1  )~)V(fi, m))/ q- 
fi • Ucl" ".F,, + 

>_ )~n(m) + ( 1 - £)n(rh) 

The characteristic points of intersection of the graph of this function with the coordinate axes in the 
(m, n) plane can be obtained using relation (3.6) as 

f ( ~ l  
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n 

n 

lm 

O m0 m 

Fig. 3 

llTrrl 
q 

Fig. 4 

A similar relation between the safety factors was first analysed for the model of the viscous rigid- 
plastic medium in [9]. 

4. L O C A L I Z A T I O N  OF T H E  D E F O R M A T I O N S  

The formulae obtained above provide us with a simple method of estimating the safety factors of the 
load. As an example we will consider the plane strain state for a homogeneous cylindrical sample of 
radius r with a radial notch whose sides are loaded with a pressure q > 0, caused, for example, thermal 
expansion of a thin metal plate inserted into the notch. We will describe the different strengths of the 
material using the Mises-Schleicher condition. According to this condition 

(l 0 = ('1:0/~:)8, K = {G['~(c~) < ~:p((r)} 

with "Co is the coupling coefficient for simple shear, ~: is the coefficient of internal friction, 9 = -G : 8/3 

is the hydrostatic pressure and "c = , ~ 7 .  or'/2 is the intensity of shear stresses (8 is the unit tensor and 
G' = G + p8 is the stress deviator). The conjugate cone is 

c = { s i r ( s )  - 0 (s ) /~}  

where 0 = s • 8 is the deformation of the volume and y = 2q~ -7 : s' is the shear intensity. 
Let  if(x) be the permissible displacement field describing the localization of the deformation of the 

simple shear with dilatation in a narrow linear zone of width h, inclined at an angle Z to the line of the 
notch (Fig. 4). In a Cartesian system of coordinates connected to this zone 

fil = Y0x2, fi2 = eoX2 (0 < x 2 < h) (4.1) 

The displacements are constant and continuous in the remaining part, outside the zone of localization. 
The condition ff e Uc takes the form 7o ~< s0 ~/1/~:2 - 4/3 and only makes sense in the case when 
~c ~< "/3/2. The limit pressure is calculated from the formula 

obtained from relation (3.6) using Green's formula. The upper bound of the form 

q* = "Co e 0 

~: 70sin)c + e0cos) ~ 

can be obtained by letting h tend to zero. The parameters occurring here must be chosen from the 
condition for a minimum of q*. Consequently 

q ,  "% / . 1 4  
= , Z = arctg~ z 3 (4.2) 

~/1 - 1~2/3 
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r q 2 l ~ ~ /  

rc/4 q* /c_ 

"U-- F 
1/3 2/3 ~5+/c_ 

Fig. 5 

This is the best upper bound of the pressure and the most probable angle of emergence of the zone of 
localization of the deformation of the type considered. In the limit as ~: --+ 0 localization occurs in a 
direction perpendicular to the notch. The zone of localization rotates and becomes an extension of the 
notch for ~: --4 "f3/2. In the case when K > 4-3/2 uniaxial tension of the medium is inadmissible, and 
hence the upper bound is constructed by a more complex method and is not included here. 

For the majority of natural and artificial materials of different strengths the tensile strength ¢5+ is 
less than the compression strength c5_. Some of them, for example graphite, are characterized by the 
fact that the ratio ~5+/c5 varies practically over the entire range from 0 to 1 depending upon the grade 
of the material. According to the Mises-Schleicher condition the strength for the uniaxial stressed 
state is 

3~ 0 
~ + -  q/~+_~ 

The coefficient of internal friction is expressed in terms of the ratio of the strengths as 

0 < ~  = ~ 1 - ~ + / ~ _ < ~  
1 + q+/c~ 

The dimensionless dependences of the angle Z and the quantity q*/cy on the parameter c~+Rs_, obtained 
from formulae (4.2), are given in Fig. 5. 

In conclusion we note that it is not possible to obtain a lower bound of the pressure, close to (4.2), 
using the static theorem, therefore it is not clear by how much q* differs from the limiting value. However, 
numerical calculations of a similar problem [10] showed satisfactory agreement of the results. 
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